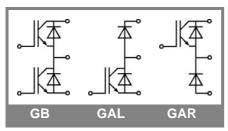
SK30GB128

SEMITOP[®] 2

IGBT Module

SK30GB128 SK30GAL128

SK30GAR128


Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- High short circuit capability
 SPT= Soft Punch Through technology
- V_{ce,sat} with positive coefficient

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings $T_s = 25 \text{ °C}$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT	_			_		
V _{CES}	T _j = 25 °C T _j = 125 °C		1200	V		
Ι _C	T _j = 125 °C	T _s = 25 °C	35	А		
		T _s = 80 °C	25	А		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		50	А		
V _{GES}			± 20	V		
t _{psc}	V _{CC} = 600 V; V _{GE} ≤ 20 V; VCES < 1200 V	T _j = 125 °C	10	μs		
Inverse	Diode		•			
I _F	T _j = 150 °C	T _s = 25 °C	37	A		
		T _s = 80 °C	25	А		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			А		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	350	А		
Freewh	eeling Diode					
I _F	T _j = 150 °C	T _{case} = 25 °C	37	A		
		T _{case} = 80 °C	25	А		
I _{FRM}				А		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	350	А		
Module						
I _{t(RMS)}				А		
T _{vj}			-40 +150	°C		
T _{stg}			-40 +125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics $T_s = 2$			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 1 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,1	0,1	mA	
		T _j = 125 °C				mA	
I _{GES}	V_{CE} = 0 V, V_{GE} = 20 V	T _j = 25 °C			200	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1,1		V	
		T _j = 125 °C		1		V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		36		mΩ	
		T _j = 125°C		48		mΩ	
V _{CE(sat)}	I _{Cnom} = 25 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}	1,7	2	2,3	V	
		T _j = 125°C _{chiplev} .		2,2	3,7	V	
Cies				1,9		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,16		nF	
C _{res}				0,09		nF	
t _{d(on)}				55		ns	
τ _r	R _{Gon} = 15 Ω	$V_{CC} = 600V$		26		ns	
E _{on}	D (5.0	I _C = 30A		2,8		mJ	
t _{d(off)}	R_{Goff} = 15 Ω	T _j = 125 °C		284		ns	
t _f		V _{GE} =±15V		40		ns	
E _{off}				2,19		mJ	
R _{th(j-s)}	per IGBT				1	K/W	

SK30GB128

SEMITOP[®] 2

IGBT Module

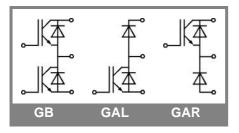
SK30GB128 SK30GAL128

SK30GAR128

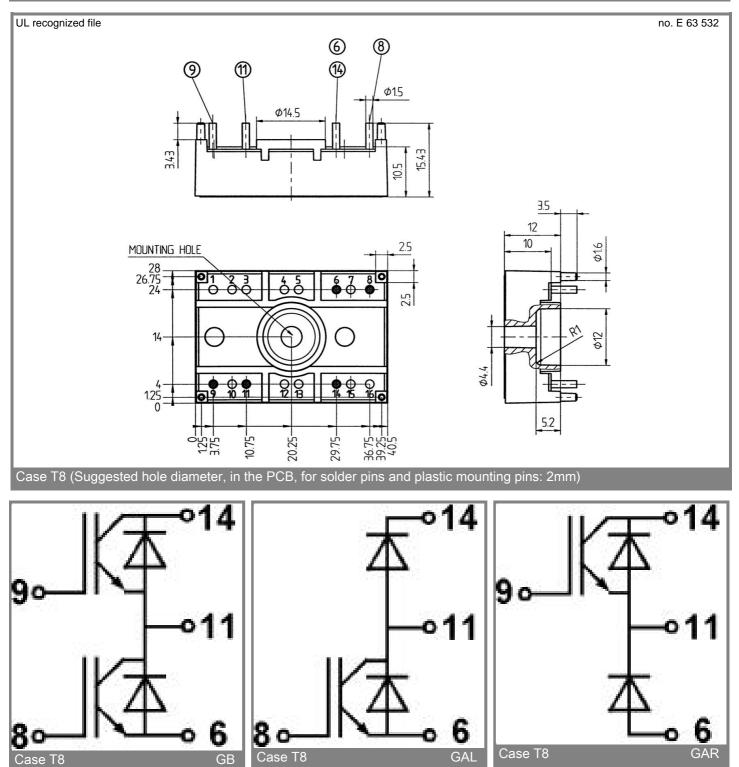
Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- High short circuit capability
 SPT= Soft Punch Through technology
- V_{ce,sat} with positive coefficient


Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
V _F = V _{EC}	I_{Fnom} = 25 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V
		T _j = 125 °C _{chiplev.}		1,8	2,3	V
V _{F0}		T _j = 125 °C		1	1,2	V
r _F		T _j = 125 °C		32	44	mΩ
I _{RRM}	I _F = 22 A	T _i = 125 °C		25		Α
Q _{rr}	di/dt = -500 A/µs			4,5		μC
E _{rr}	V _{CC} = 600V			1		mJ
R _{th(j-s)D}	per diode				1,2	K/W
	eling Diode					
V _F = V _{EC}	I _{Fnom} = 25 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V
		T _j = 125 °C _{chiplev.}		1,8	2,3	V
V _{F0}		T _j = 125 °C		1	1,2	V
r _F		T _j = 125 °C		32	44	V
I _{RRM}	I _F = 22 A	T _i = 125 °C		253		Α
Q _{rr}	di/dt = -500 A/µs	,		4,5		μC
E _{rr}	V _R =600V			1		mJ
	per diode				1,2	K/W
M _s	to heat sink M1				2	Nm
w				19		g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SK30GB128

